For example on wikipedia for Switzerland it says the country has an area of 41,285 km². Does this take into account that a lot of that area is actually angled at a steep inclination, thus the actual surface area is in effect larger than what you would expect when looking onto a map in satellite view?
I would imagine that the area increases significantly, a type of example of what they say about fractal coastlines theoretically being able to have a perimeter of infinite length.
EDIT: it just occurred to me that theoretically, if measuring area with a different scale, a country like Bhutan could claim to have as much surface area as… say Australia.
Or both are infinite, but since one fits inside the other, I’m getting into that weird mathematical study of infinities within infinities.
The Gabriel’s horn / painter’s paradox is a good one too.
Never heard of it before, that’s another mind melter. How does the volume of the horn end up to neatly be pi ?? YouTube link I found.
Congratulations! You just uncovered the premise of Cantor’s diagonal argument , which demonstrates this very thing: that there are an infinite number of infinite sets, each of a different size.
Also for some reason I can’t ever wrap my head around, this idea bothers some religious faith leaders enough to want the teaching of it banned in public schools. ¯\_(ツ)_/¯